

TTC BLE SDK CC2640 部分硬件特性测试

文件版本: V1.1

深圳市昇润科技有限公司 2017 年 02 月 24 日 版权所有

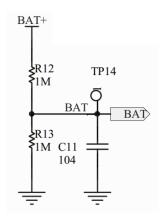
	版本	修订日期	修订人	审稿人	修订内容
Ī	1.0	2016-12-30	郭高亮/徐凯翔	张眼	初稿
Ī	1.1	2017-02-24	郭高亮	张眼	ADC 特性测试完善

見 录

H N	
1. ADC 相关特性测试2	2
1.1 ADC 精度2	2
1.1.1测试方法介绍2	2
1.1.2 ADC 特性表3	3
1.2温度传感器(Temperature Sensor)6	3
1.2.1 测试方法介绍6	ŝ
1.2.2 测量结果6	3
1.3 电池电压监测(Battery Monitor)7	7
1.3.1 测试方法介绍7	7
1.3.2 测量结果7	7
1.4 环境温度以及供电电压对 ADC 的影响8	3
1.4.1 供电电压 VDDS 对 ADC 的影响 8	
1.4.2 环境温度对 ADC 的影响 8	
2. GPIO 测试	
2.1 GPIO 输入门限测试10	Э
2.2 负载能力测试(单个 I0 口)11	1
2.2.1 拉电流11	1
2.2.2灌电流12	2
9 联系447)

1. ADC 相关特性测试

测试主要有以下几点:


- ➤ ADC 使用不同参考源时电压测量精度
- > 温度传感器的精度
- ▶ 电池电压精度
- ➤ 环境温度以及供电电压对 ADC 的影响

1.1 ADC 精度

1.1.1测试方法介绍

(1) 外围电路介绍

在用作 ADC 输入的引脚外需要加一个 RC 电路,需要采集的电压通过一个 104P 的电容接到地。如图:

(2) 软件处理介绍

在程序中需要构建一个周期事件来周期性的读取电压的 AD 值,实际测试时是每个周期连续采集 20 次得到 20 个数据然后取平均值,最后将平均值通过蓝牙上传至 lightblue 显示,测试人员记录若干组平均值,完成数据记录后就能绘制出图表。

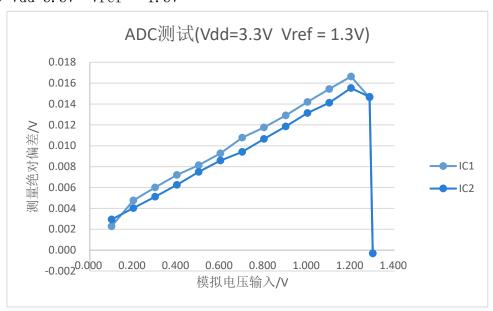
另外,ADC 可以软件设置使用不同的内部电压参考源,但不支持使用外部参考源。

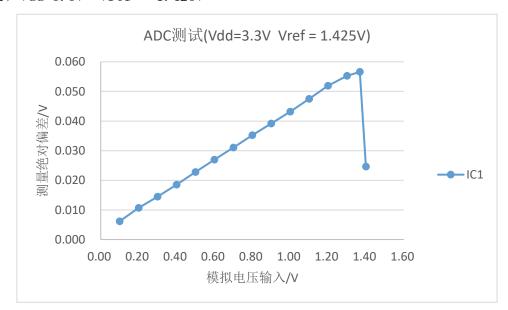
(3) 实际操作

实际测试是采用高精度的直流电源分析仪(能精确到 0.0001V)输出电压至上图 BAT+,调节此电压输出,用高精度万用表(能精确到 0.0001V)测量上图 BAT处的电压(注意,在调整好电压后需将电压表表笔移开,以免影响测量)。然后计算理论值与实际值的差,凭此差值来观察 ADC 的特性,每个参考电压都测试一遍,最终就能得到完整的 ADC 特性表。

注意: ADC 测试时,模拟 IO 口电压输入需小于 VDDS,以保证测试精度!

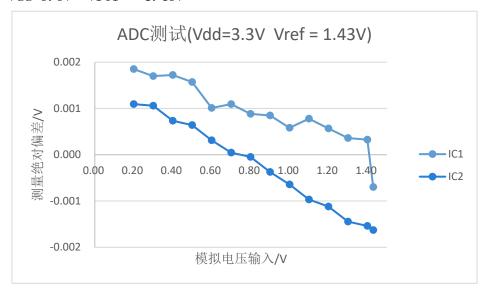
(4) 小结


根据实际测试:使用内部 1.43V 电压作为参考电源时,ADC 测量精度较好(在 0V~1.43V 范围内,测量绝对偏差在 2mV 以内)。测试所用 3 片芯片,测量绝对误差一致性较好。选用其他参考电源时,测量绝对偏差不同幅度的增大。

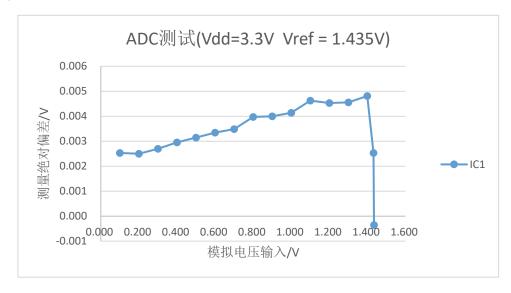

以下测试结果仅供参考。

1.1.2 ADC 特性表

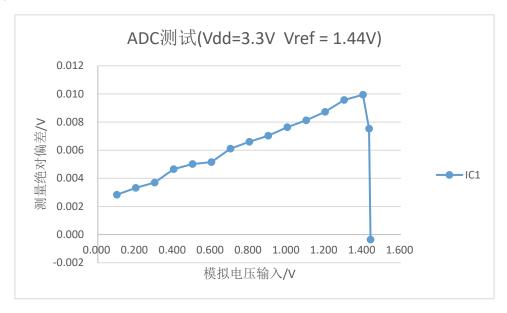
(1) Vdd=3.3V Vref = 1.3V



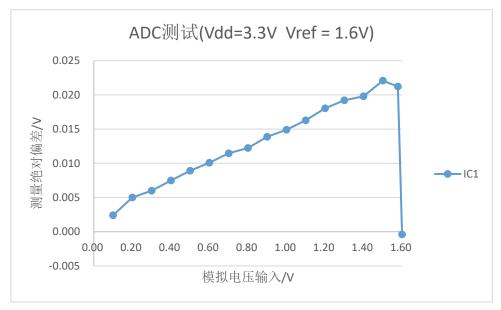
(2) Vdd=3.3V Vref = 1.425V



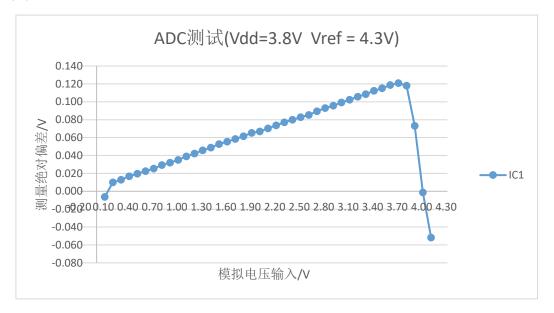
(3) Vdd=3.3V Vref = 1.43V



(4) Vdd=3.3V Vref = 1.435V



(5) Vdd=3.3V Vref = 1.44V



(6) Vdd=3.3V Vref = 1.6V

(7) Vdd=3. 8V Vref = 4.3V

1.2 温度传感器 (Temperature Sensor)

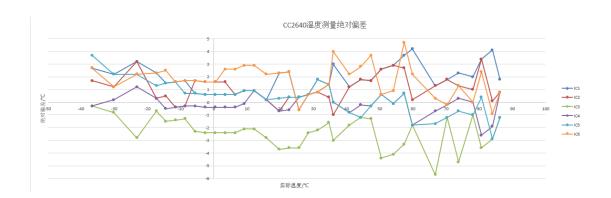
经过测试,在-40℃ ~+85℃范围内,温度传感器的测量绝对偏差在 5℃以内,符合 datasheet 参数:

Measured on the TI CC2650EM-5XD reference design with $T_c = 25^{\circ}C$, $V_{DDS} = 3.0 \text{ V}$, unless otherwise noted.

read and an another control of the read and given and the control of the control								
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
Resolution			4		°C			
Range		-40		85	°C			
Accuracy			±5		°C			
Supply voltage coefficient ⁽¹⁾			3.2		°C/V			

1.2.1 测试方法介绍

(1) 软件处理介绍


在程序中需要构建一个周期事件来周期性的读取温度值,将测量结果通过蓝牙上传至 lightblue 显示,观测连续 5 次测试结果,完成数据记录后绘制出图表。

(2) 实际操作

6个 CC2640 5*5 模块同时测量,3.3V 供电,放入高低温测试箱,并用数字温度计辅助记录实际温度。依次设置高低温测试箱的目标温度,待温度稳定后,记录数字温度计的温度值及 lightblue 显示的测量温度值。

1.2.2 测量结果

以下图中包含 6 片 CC2640 同时测试的结果,分别用 6 条不同颜色的折线表示,仅供参考。测试所用 6 片芯片并不具备非常好的一致性,但精度基本在 5 摄氏度以内。

1.3 电池电压监测(Battery Monitor)

经过测试,电池电压监测的测量绝对偏差在 30mV 以内。以下为 datasheet 所给参数:

Measured on the TI CC2650EM-5XD reference design with T_c = 25°C, V_{DDS} = 3.0 V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution			50		mV
Range		1.8		3.8	V
Accuracy			13		mV

1.3.1 测试方法介绍

(1) 软件处理介绍

在程序中需要构建一个周期事件来周期性的读取电池电压,将测量结果通过蓝牙上传至 lightblue 显示,观测连续 5 次测试结果,完成数据记录后绘制出图表。

(2) 实际操作

分别测试两个 CC2640 5*5 模块,使用直流电源分析仪在 1.8V~3.8V 范围内供电,依次记录测量结果。

1.3.2 测量结果

以下图中包含 2 片 CC2640 测试的结果,分别用 2 条不同颜色的折线表示,仅供参考。测试所用 2 片芯片并不具备非常好的一致性,但精度基本在 30mV 以内。

1.4 环境温度以及供电电压对 ADC 的影响

- 1.4.1 供电电压 VDDS 对 ADC 的影响
- (1) 规格书所给参数如下:

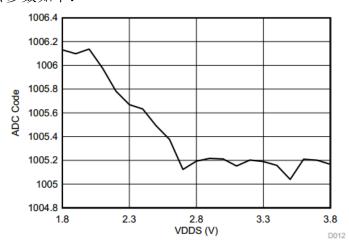


Figure 5-18. SoC ADC Output vs Supply Voltage (Fixed Input, Internal Reference, No Scaling)

(2) 使用内部 1. 43V 作为测量参考源,直流电源分析仪 1. 46v 作为固定输入,并配合 1.1.1 节提及的分压电路,在-40 $^{\sim}$ +80 $^{\sim}$ 范围内,测试结果最大偏差为 6LSB(2mV)。

1.4.2 环境温度对 ADC 的影响

实际测量结果基本符合规格书所给参数。

注意: ADC 测试时,模拟 IO 口电压输入需小于 VDDS,以保证测试精度!

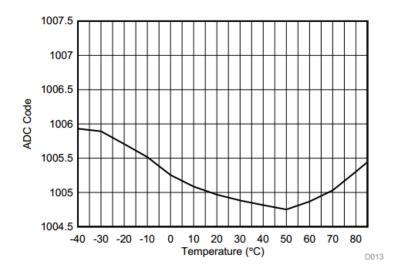


Figure 5-19. SoC ADC Output vs Temperature (Fixed Input, Internal Reference, No Scaling)

2. GPIO 测试

测试项分为两项:输入门限及负载能力测试,均基本符合 TI 给出的参数,请参考 TI CC2640 数据手册。以下测试结果仅供参考。

2.1 GPIO 输入门限测试

1. TI DataSheet 参数

VIH: ≥0.8*VDDS (Lowest GPIO input voltage reliably interpreted as a «High»)
VIL: ≤0.2*VDDS (Highest GPIO input voltage reliably interpreted as a «Low»)

2. 测试结果

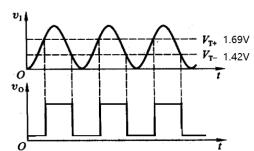
(1) 输入 I0 口设置: 输入、无上拉、无滞后

IOID_14 | PIN_GPIO_OUTPUT_DIS | PIN_INPUT_EN | PIN_NOPULL,

VIH: ≥1.51V

VIL: ≤1.49V

备注:存在不稳定区间


(2) 输入 I0 口设置: 输入、无上拉、有滞后

IOID 14 | PIN GPIO OUTPUT DIS | PIN INPUT EN | PIN NOPULL | PIN HYSTERESIS,

正向递增阈值电压 V_{T+}: 1.69V

负向递减阈值电压 V_{T-}: 1.42V

注: 中间电压根据电压变化方向判断

备注: PIN_HYSTERESIS 使能之后,相当于加入施密特触发器的功能。对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阈值电压。

(3) 上拉无滞后

VIH: ≥1.51V

VIL: ≤1.49V

(4) 上拉滞后

正向递增阈值电压 V_{T+}: 1.67V

负向递减阈值电压 V_T-: 1.43V

(5) 下拉无滞后

VIH: ≥1.51V

VIL: ≤1.49V

(6) 下拉滞后

正向递增阈值电压 V_{T+}: 1.67V 负向递减阈值电压 V_{T-}: 1.43V

测试结果:

供电	无滞后门限	滞后门限(无上下拉)
3.8V	1.69V	1.57V/1.91V
3.3V	1.49V/1.51V	1.38V/1.73V
3. OV	1.36V/1.39V	1.27V/1.60V
2.7V	1.24V/1.27V	1.15V/1.47V
2.4V	1.13V/1.16V	1.03V/1.33V
2. OV	0.97V/0.98V	0.85V/1.16V

2.2 负载能力测试(单个 IO 口)

CC2640 高驱动能力引脚为 DIO_3、DIO_4、DIO_5、DIO_6。驱动能力设置: #define PIN_DRVSTR_MIN (PIN_GEN|(0x0<<8)) ///< (*) Lowest drive strength #define PIN_DRVSTR_MED (PIN_GEN|(0x4<<8)) ///< Medium drive strength #define PIN DRVSTR MAX (PIN GEN|(0x8<<8)) ///< Highest drive strength

2.2.1 拉电流

测试环境:

CC2640 透传模组, IO 口接一个可调电阻下拉至 GND,调节电阻值,观测 IO 口的输出、IO 口的电压,分别在不同配置下二者的之间的影响。

备注:测试过程中模组与 lightblue 始终保持链接状态。

供电 VDDS	І0 □	I0 设置	输出电流	实测电压	TI 参考值
			15.092 mA	2.32 v	
			10.088 mA	2.68 v	
3.3V	DIO_3	PIN_DRVSTR	8.020 mA	2.80 v	
3.31	输出高电平	_MAX	4.005mA	3.08 v	
			2.006mA	3. 22v	

供电 VDDS	І0 □	IO 设置	输出电流	实测电压	TI 参考值
			15.210 mA	1.92v	
			10.161mA	2. 40v	
2 01/	DIO_3	PIN_DRVSTR	8.057mA	2. 52v	2. 68v
3. OV	输出高电平	_MAX	4.021mA	2.80v	
			2.015mA	2. 92v	

供电 VDDS	10 口	I0 设置	输出电流	实测电压	TI 参考值
			15.223 mA	1.40 v	
			10.233 mA	1.80 v	
2.4V	DIO_3	PIN_DRVSTR	8.066 mA	1.92 v	
2.4	输出高电平	_MAX	4.098 mA	2.20 v	
			2.032mA	2.32 v	

2.2.2 灌电流

测试环境:

CC2640 透传模组, IO 口接一个可调电阻上拉至 VDDS, 调节电阻值, 观测 IO 口的输出电流、IO 口的电压,分别在不同配置下二者的之间的影响。

供电 VDDS	10 口	I0 设置	输出电流	实测电压	TI 参考值
			-15.230 mA	1. 160v	
			-10.116 mA	0.680 v	
3. 3V	DIO_3	PIN_DRVSTR	-8.093 mA	0.520 v	
3.31	输出低电平	_MAX	-4.036 mA	0.240 v	
			-2.065mA	0.120 v	

供电 VDDS	І0 □	I0 设置	输出电流	实测电压	TI 参考值
			-15.131 mA	1.160 v	
			-10.356 mA	0.680 v	
3. OV	DIO_3	PIN_DRVSTR	-8.006 mA	0.520 v	0.33V
3.00	输出低电平	_MAX	-4.060 mA	0.240 v	
			-2.020 mA	0.120 v	

供电 VDDS	10 口	I0 设置	输出电流	实测电压	TI 参考值
			-15.049 mA	1. 200v	
			-10.020 mA	0.600 v	
2.4V	DIO_3 输出低电平	PIN_DRVSTR _MAX	-8.130 mA	0.440 v	
			-4.033 mA	0.240 v	
			-2.090 mA	0.120 v	

3. 联系我们

深圳市昇润科技有限公司

ShenZhen ShengRun Technology Co., Ltd. Tel: 0755-86233846 Fax: 0755-82970906

官网地址: www.tuner168.com

阿里巴巴网址: http://shop1439435278127.1688.com

E-mail: marketing@tuner168.com

地址: 广东省深圳市南山区西丽镇龙珠四路金谷创业园 B 栋 6 楼 601-602

